
Diploma Thesis

Universal Dataprovider For Heterogen Systems Based
On COM+ And XML

Written At The:

TECHNIKUM WIEN
FACHHOCHSCHULSTUDIENGANG ELEKTRONIK

Written By:

Stefan Domnanovits, Roterdstr 12/3/5 A-1160 Wien, 9710011086

Coaches:

Company: DI Mario Simandl, ace Neue Informationstechnologien GmbH

Academy: DI Dr Robert Pucher

Date: 28.05.2001

Problem

The task was to develop an application server capable of providing information to different

clients. This server must be able to retrieve data from many different data sources with

different kind and structure. Additionally the results have to be linked together to express

related data together in a consistent form. The clients have to be able to use this server even if

they are written in a language different as that from the server. Also the client access must be

handled in transactions to protect the multiple data sources from inconsistency and to secure

the data access from multiple clients accessing the server at the same time.

The server should also be easy to administrate and must have the ability to be easily upgraded

for future data sources.

Abstract

This paper develops a server application as a possible solution for enterprises that want to

retrieve information from multiple data stores. The server is developed using XML as data

transportation format and COM+ as the runtime environment. This gives the server the

advantages of usability for many programming languages, transaction safety across multiple

data platforms, and scalability. The server is also extensible because of using plugins for data

access and it is easy to administrate due the fact that the configuration information is

displayed and can be edited in a clear form inside the Microsoft Management Console, the

standard configuration environment under Windows 2000.

Diese Diplomarbeit beschreibt die Entwicklung eines Servers für Unternehmen welche

Informationen aus verschieden Datenspeichern verwerten wollen. Hierzu wir XML als

Datenformat für den Transport verwendet und die COM+ Laufzeitumgebung. Dies gibt dem

Server eine Reihe von Vorteilen: Verwendbarkeit durch zahlreiche Programmiersprachen,

Transaktionssicherheit selbst über mehrere Datenplattformen hinweg. Der Server ist

außerdem erweiterbar durch die Verwendung von Plugins für den Datenzugriff und außerdem

leicht zu administrieren, da die Konfigurationsdaten in einer übersichtlichen Form innerhalb

der Microsoft Management Konsole, der Standard Konfigurationsumgebung unter Windows,

dargestellt und bearbeitet werden können.

Used Abbreviations

ADO___Active Data Object

API___Application Programming Interface

ATL __ Active Template Library

CLSID __ Class Identifier

COM __ Component Object Model

DBMS __Database Management System

DCOM __ Distributed COM

DLL __ Dynamic Link Library

FSC ___Fabasoft Components

GUID ___ Global Unique Identifier

HTML ___ Hypertext Markup Language

IID ___ Interface ID

IDL___ Interface Definition Language

IPC___ Inter-Process Communication

MMC ___ Microsoft Management Console

MSDAC______________________________________ Microsoft Data Access Components

MSMQ___ Microsoft Message Queue

MSVS ___ Microsoft Visual Studio

MTA ___ Multi-Threaded Apartment

MTS__ Microsoft Transaction Service

RPC __Remote Procedure Call

SCM__ Service Control Manager

SDK ___Software Development Kit

SQL __ Structured Query Language

STA __ Single Threaded Apartment

STL ___Standard Template Library

TNA___ Thread Neutral Apartment

UML __ Unified Modeling Language

vptr ___Virtual Function Pointer

vtbl __ Virtual Function Table

XML __Extensible Markup Language

Table Of Contents

1 INTRODUCTION 1

1.1 INTRODUCTION 1
1.2 HOW TO READ THIS DOCUMENT 1
1.2.1 SOURCE CODE 1
1.2.2 UML DIAGRAMS 2
1.2.3 XML REPRESENTATION 2

2 THEORY 3

2.1 DISTRIBUTED APPLICATION DESIGN 3
2.1.1 MULTILAYER DESIGN 3
2.1.2 BENEFITS OF MULTILAYER DESIGNS 3
2.2 XML 4
2.3 OBJECT ORIENTED PROGRAMMING 5
2.3.1 OBJECTS AND CLASSES 5
2.3.2 INHERITANCE 6
2.3.3 POLYMORPHISM 7
2.3.4 TEMPLATES 8
2.4 THE COMPONENT OBJECT MODEL (COM) 9
2.4.1 BASIC IDEA 9
2.4.2 IUNKNOWN 13
2.4.3 INTERFACE DEFINITION LANGUAGE (IDL) 16
2.4.4 COM THREADING 18
2.4.5 EXTENDED ERROR INFORMATION 21
2.4.6 DCOM 22
2.5 THE NEXT STEP: COM+ 24
2.5.1 COM+ CONTEXT 25
2.5.2 JUST IN TIME ACTIVATION AND OBJECT POOLING 26
2.5.3 TRANSACTIONS 27

3 IMPLEMENTATION 32

3.1 A UNIVERSAL DATA ACCESS SERVER 32
3.2 IMPORTANT CLASSES AND LIBRARY’S USED 32
3.2.1 THE STANDARD TEMPLATE LIBRARY (STL) 32
3.2.2 THE ACTIVE TEMPLATE LIBRARY (ATL) 33
3.2.3 ADDITIONAL HELPER CLASSES 33
3.3 SERVER DESIGN 35
3.3.1 RAW CONCEPT 35
3.3.2 PLUGIN DESIGN 35
3.3.3 XML SERVER COMMAND STRUCTURE 37
3.3.4 XML COMMAND PARAMETERS 38

3.4 SERVER IMPLEMENTATION 38
3.4.1 XML SERVER INTERFACE 38
3.4.2 INTERNAL STRUCTURE 40
3.4.3 THE PLUGINS 42
3.4.4 PARSING THE XML COMMANDS 46
3.4.5 MERGING THE XML INFORMATION 47
3.4.6 COMMUNICATION WITH THE PLUGINS 48
3.5 SERVER CONFIGURATION 48
3.5.1 CONFIGURATION DATABASE DESIGN 48
3.5.2 THE MICROSOFT MANAGEMENT CONSOLE (MMC) 50
3.6 THE SERVER CLIENTS 53
3.6.1 C++ CLIENT 53
3.6.2 VISUAL BASIC CLIENT 54
3.6.3 CLIENT RESULTS 54

4 CONCLUSION 56

5 BIBLIOGRAPHY 57

6 APPENDIX 58

6.1 PROJECT SUMMARY 58
6.2 SERVER IDL FILES 59
6.2.1 XML SERVER 59
6.2.2 PLUGIN INTERFACE 60
6.2.3 ADMINISTRATION MMC SNAPIN 61

Stefan Domnanovits

 - 1 -

1 INTRODUCTION

1.1 INTRODUCTION
This paper tries to find a solution for a problem that is common in bigger enterprises. There
are multiple departments with information systems and different data. To use this data most
effectively the enterprise has to link this different data sources and be able to find and retrieve
information in an effective way.

The XML data provider developed with this paper is a possible answer. This XML Server
uses, as the name implies, XML as data transportation format. XML is one of the most
flexible data representation formats and has already begun to find its way into most bigger
software products1. The runtime environment of the server is COM+. The server makes
extensive use of COM+ features like distributed transactions supported by the Microsoft
Transaction Server, Object Pooling or Just In Time activation.

This diploma thesis develops the server by first describing the basic technology issues
associated with this project, like object orientation, COM and finally COM+. Next the XML
Server implementation is described. This includes the server itself but also the administration
tool that had to be build, to support administrators in their task.

Whenever possible the usage of C++ is avoided. Instead UML diagrams are used. This
enhances readiness of program capabilities because UML is able to display often the same
information but in a graphical view. This enables developers who are not that experienced in
C++ to quickly gather an overview of the displayed functionality.

1.2 HOW TO READ THIS DOCUMENT

1.2.1 Source Code
In code examples, a proportional font is used for identifiers. For Example:

#include <iostream>
int main()
{
 std::cout << “Hello, new world!\n”;
}

At first glance, this representation style seem “unnatural” to programmers accustomed to
seeing code in constant-width fonts. However, proportional-width fonts are generally

1 The W3C Consortium has already defined a communication standard based on XML, called SOAP. All new
server Products from Microsoft have XML interfaces, like the SQL Server 2000 or the Microsoft Biztalk Server
2000. Also all other major software companies equip their new software with new XML features, including the
Oracle Server Database or SAP R/3.

Stefan Domnanovits

 - 2 -

regarded as better than constant-width fonts for presentation of text. Using this font also
allows presenting code with fewer illogical line breaks.

1.2.2 UML Diagrams
Unified Modeling Language (UML) diagrams are a standard in describing objects and their
relationship between each other. These diagrams are also used in describing object activities
on a time base and presenting business workflows.

-Name : String
-Weight : Integer

Animal

+CatchPostman()

Dog

+EatBait()

Fish

Figure 1.2.2-1 Basic UML Example

There are different ways of interpreting each symbol. This diploma thesis works with the
standard described in [2].

1.2.3 XML Representation
XML Data is written in a constant-width font, where the XML data is written in bold letters.
This helps the reader to separate the XML tag names from the actual XML content.

<Animal>
<Dog>
<name>Charlie</name>
<weight>100</weight>

</Dog>
<Fish>
<name>Susi</name>
<weight>5</weight>

</Fish>
</Animal>

Stefan Domnanovits

 - 3 -

2 THEORY

2.1 DISTRIBUTED APPLICATION DESIGN

2.1.1 Multilayer Design
Multilayer design means that the whole application is not programmed as one whole block of
functionality. Instead the application is split into different service layers each one
concentrating on a specific task in the whole application

User Interface

Data Store

User Services

Business Services

Data Access
Services

User Layer

Business Layer

Data Layer

Figure 2.1.1-1 Multitier Application

These services can be distributed across both physical and functional boundaries to support
the needs of the solution. The possible breadth of application of each service allows for
parallel development, better use of technology, easier maintenance, and increased flexibility
in the distribution and deployment of each logical service in the solution.

2.1.2 Benefits of Multilayer Designs
Using a Multitier design approach can provide several benefits to the developer process.
These benefits include reusability, flexibility of distribution, and parallelism in the design
effort.

Stefan Domnanovits

 - 4 -

• Reusability Traditionally, applications have been developed independently, each
project focusing exclusively on its own needs. When a business rule or information
view changes, each element of the application would have to be modified to work with
the new development. Using a services based, modular approach, developers can
design, implement and change systems independently of the other service layers.

• Flexibility of distribution The service-based approach provides maximum flexibility
by allowing developers to deploy logic where it best meets the performance and usage
requirements of the application. This approach also supports greater interoperability.
With current technologies, services are provided with a transparency of location,
enabling them to be distributed in the best configuration for the particular business
solution, whether that means all on one client computer or across multiple computers
around the world.

• Parallelism One of the major advantages offered by the service-based approach is the
ability to do more than one development task at a time. Because the application model
defines an application structure of five distinct pieces, each of these pieces can be
worked on in parallel. In the past, with monolithic implementations, development was
a serial process because no distinction was made among different types of
functionality.

The abilities of COM described in the later chapters make it an ideal technology for
programming applications in a multilayer design. COM shares all major advantages of this
development approach.

The XML Server described in this document itself is programmed as part of the data access
services, shown in Figure 2.1.1-1. Providing data in XML form to higher application layers.

2.2 XML
Data may have very different structure and form between different data stores and
applications. For example the “classical” relational database like the MS SQL Server or the
Oracle Database have its data stored in tables connected with foreign keys. But other sources
like files located on a hard disk or the new Active Directory from Microsoft have their data
stored in a hierarchy like a tree.

It is difficult to find a form, which can represent all these kinds of different data structures.
The XML standard is the most pleasant way to represent many different types of data. It is
especially an ideal form if it is used for asynchrony transportation over the Internet. Because
modern browser like the Internet Explorer are able to display this data with a descriptive
XML Style Sheet like any other HTML document. Here are two examples how a XML file
may look.

Stefan Domnanovits

 - 5 -

<personlist>
<person id=1>
<name>Domnanovits</name>
</person>
<person id=2>
<name>Simandl</name>
<person>

</personlist>

<message>
<body>
Hi Mario, do we meet

each other tomorrow?
</body>
<siganture>
Stefan

</signature>
</message>

As anyone can see in the XML lines above, XML does not contain any style format
information like the fonts to use or to display the data in a table. The task of formatting the
data is done in an XML Style Sheet. This allows a clear separation of data and its
representation. This is a great advantage to web applications without using XML because
there the developer has to build and to format the data into one big HTML document. This
takes much more effort than two separate task of retrieving and displaying information.

An XML Style Sheet would display the first XML file as a list or table. The second one
would be displayed in a more message like way.

As one can see XML is well structured and very flexible in its data storage. The data is
divided into different tags. Each tag starts with a tag name in peaked parenthesis and ends
with a tag of the same name containing a slash in front of the name. The actual data is stored
between the start and the end tag. Also each tag may contain itself an infinite number of
additional sub tags. Additionally it is possible for each tag to be more classified with
supplementing attributes to produce more specification about one tag.

One of the major goals of XML Server was to retrieve and transport content and knowledge
information, that means presenting larger text data and document attributes. XML is ideal for
that task, considering the fact that HTML (the content language of the Internet) is just a sub
standard of XML.

2.3 OBJECT ORIENTED PROGRAMMING
Programming in an object-oriented language is not that difficult. The real problem is that it
takes a while to understand the advantages in using the new object features. Tom Hadfield
gets the point in saying: “Object languages allow advantages but don’t provide them”2.

2.3.1 Objects and Classes
In all object-oriented applications the basic element of information and action is an object. An
object contains of data elements and operations. The data is stored in member variables and
the operations are performed in methods. Figure 2.3.1-1 shows an example of such a simple
class.

2 Taken from [16], Page 22

Stefan Domnanovits

 - 6 -

+Move()
+Eat()

-Name : String
-Weight : Integer

Animal

Figure 2.3.1-1 Animal Object

This animal class is described with two data members, a string containing the name of the
animal and the weight as a number. The animal is able to perform two actions, to move and to
eat. The programmer is now responsible to perform these actions. This means he has to
produce code that moves the animal and to perform the animal eating mechanism.

Now the user may create different instances of animals and is able to move them around in its
virtual world and to let them eat and become fat.

2.3.2 Inheritance
Unfortunately there are many different animals and a developer would be very hard pressed to
implement a moving mechanism for all kind of spiders, animal, fishes etc. On the other hand
many creatures share the same moving or eating mechanism. Inheritance is the way to group
these bunch of abilities and to add new or specific ones.

+Move()
+Eat()

-Name : String
-Weight : Integer

Animal

+Move()
+CatchPostman()

Dog

+Move()
+HuntMice()

Cat

Figure 2.3.2-1 Object Inheritance

In the figure above the animal object is now closer specified with two additional classes. The
software developer is now able to write a moving method for all kinds of dogs or all kind of
cats. This mechanism may be continued in all directions.

Stefan Domnanovits

 - 7 -

2.3.3 Polymorphism
Another technique is added to objects to make lifer easier for software developers. Until now
the full program capability is spread over different objects. This is convenient if every object
knows exactly each type of object and how to handle it. Consider the following example: A
Cage object is added. This Cage may contain any type of animal. But what happens if
somebody wants to feed the object in the cage.

+Move()
+Eat()

-Name : String
-Weight : Integer

Animal

+Move()
+Eat()
+CatchPostman()

Dog

+Move()
+HuntMice()

Cat

-Pet : Animal
Cage

1 1

contains

Figure 2.3.3-1 Object Polymorphism

The Cage does not know the difference between a cat and a dog. The only information it has
is that there is an animal inside. The solution to this problem is polymorphism. The Cage calls
the Eat() method of the animal it contains and the object in the cage itself knows if to call the
Dog::Eat() method or the default implementation in the animal class. Same goes with the
Move() method. This behavior is achieved with a virtual function table.

2.3.3.1 Virtual Function Table
Each method with the ability to instantly call the corresponding method of a derived class is a
call of a virtual function or method. The runtime implementation of these virtual functions
takes the form of Virtual Function Pointers (vptr) and Virtual Function Tables (vtbl).

This technique is based on the compiler silently generating a static array of function pointers
for each class that contains virtual functions. This array is called the virtual function table and
contains one function pointer for each virtual function defined in he class or its base class.
Each instance contains a single invisible data member called the virtual function pointer that
is automatically initialized by the constructor to point to the class’s vtbl. When a client calls
(like the Cage class) a virtual function, the compiler generates the code to dereference the
vptr, index into the vtbl, and call through the function pointer found at the designated
location.

Stefan Domnanovits

 - 8 -

Cat

vptr

Name
Weight

Cat::Move
Animal::Eat

Figure 2.3.3-2 Cat Class Detail

Figure 2.3.3-2 shows this process in the Cat class. If a client wants to call the Move method
the class instance has stored the function pointer to the Cat implementation. A default Eat
function was implemented in the Animal class. Therefore the vtbl contains a pointer to
Animal::Eat.

This mechanism is essential for virtual classes and in consequence the basic abstraction
mechanism in COM (s Chapter 2.4).

2.3.4 Templates
Microsoft’s Active Template Library (ATL) is, as the name mentions, based on templates and
is the main object library used to develop COM applications.

Templates are an advanced programming technique in object oriented programming, but only
a few programming languages are capable of templates. C++ is one of those.

Imagine that a programmer wants to develop a cage that is not only capable of containing
animals. Instead he wants to program a cage that is able of containing any available type even
types that are not programmed at this time.

A template achieves this exactly. A C++ class is able to accept a template parameter as future
type.

+Insert(in NewContent : TContent)
+EmtpyBox() : TContent

-m_Content : TContent

MyOwnTemplateBox

TContent

Figure 2.3.4-1 Template Class

The UML diagram above shows such a template. This template is able to insert and remove
any type of object in and out of the box. In C++ a class like MyOwnTemplateBox would be
written like the following.

Stefan Domnanovits

 - 9 -

template < class TContent >
MyOwnTemplateBox
{
 TContent m_Content;

 public:
 void Insert(const TContent &newContent);
 TContent EmptyBox();
};

A user of that class is now able to include any Animal into that Box with the following line of
code.

MyOwnTemplateBox<Dog> dogCharlie;

The C++ compiler now creates a new class at compile time inserting the Dog class type
instead of the template parameter TContent.

2.4 THE COMPONENT OBJECT MODEL (COM)

2.4.1 Basic Idea
COM was designed as a basic technology for MS Windows and multilayer systems. Today all
major applications from MS are based on COM like MS Office, MS Project, etc and also
major parts of the operating system. Nearly all well known applications provide a COM
interface to allow linkage and apply extensions.

2.4.1.1 Reusability
Reusability is a goal every software company wants to achieve. Time is money and every
minute counts in the development process. One way to use the already designed and
implemented classes is to put them in a static library and every other application may link to
this library when creating the final binary file.

Another technique for code reuse is to package a class in a Dynamic Link Library (DLL). The
Microsoft (MS) C++ Compiler provides the __declspec(dllexport) keyword for just this
purpose.

Consider following class FastString.

Stefan Domnanovits

 - 10 -

// faststring.h version 1.0
class __declspec(dllexport)
FastString
{
 char *m_pszString;
 public:
 FastString(const char *pszString);
 ~FastString();
 int Length() const; //return number of charactes
 int Find(const char *pszSubString) const; //returns offset
};

When the class is exported from a DLL, the FastString machine code needs to exist only once
on the user’s hard disk. When multiple clients access the code from the library, the operating
system’s loader is smart enough to share the physical memory pages of the DLL between all
clients.

Application A

Application B

Application C

Faststring.dll

Figure 2.4.1-1 Faststring as a DLL

Now someone wants to enhance the FaststString class because it is not fast enough. This
developer enhances the class in adding a member, which holds the actual count of characters.
Thus acting much faster in returning the length of the string.

// faststring.h version 2.0
class __declspec(dllexport)
FastString
{
 const int m_iCount;
 char *m_pszString;
 public:
 FastString(const char *pszString);
 ~FastString();
 int Length() const; //return number of charactes
 int Find(const char *pszSubString) const; //returns offset
};

Stefan Domnanovits

 - 11 -

Now the new DLL is installed, replacing the old one. The new applications using this new
FastString performs extremely fast and all seems well. Then the user starts a previous
application that also happens to use the fastring.dll. Suddenly a dialog appears indicating that
an exception has occurred and that all of the end user’s work has been lost. What happened?
Figure 2.4.1-2 shows the answer.

Version 1.0 of FastString required four bytes per instance. Clients written to version 1.0 of
the class definition allocate four bytes of memory to pass to the class’s constructor. Version
2.0 of the DLL assumes that all clients have allocated eight bytes per instance.

Application A
Version 2.0

Application B
Version 1.0

Application C
Version 1.0

Faststring.dll
Version 2.0

sizeof(FastString) == 8

sizeof(FastString) == 8

sizeof(FastString) == 4

sizeof(FastString) == 4

Figure 2.4.1-2 FastSting V2.0

Unfortunately, in version 1.0 clients, the second four bytes of the object really belong to
someone else and writing a pointer of a text string at this location is considered rude, as the
exception dialog before indicates.

COM provides a solution to this problem. It creates a binary constant interface with the help
of two basic object orientation mechanisms – inheritance and polymorphism.

2.4.1.2 Virtual Classes
The first step in building a binary constant interface is to describe the basic object design in
the form of virtual classes.

Virtual implies that the class exists only as a definition and has not a working implementation
or any data members. The actual implementation is done in derived classes.

The Figure 2.4.1-3 shows a possible implementation with virtual classes. The AnimalBase,
DogBase and CatBase classes are pure virtual. This means the base classes contain no
implementation.

Stefan Domnanovits

 - 12 -

+Move()
+Eat()

IAnimalBase

+CatchPostman()

IDogBase

+HuntMice()

ICatBase

+Move()
+Eat()
+CatchPostman()
+HuntMice()

Animals

Figure 2.4.1-3 Virtual Class Inheritance

All the working source code is implemented in the Animals class that is derived from
DogBase and CatBase. All client methods have to be called on these base classes. There
through object polymorphism the implementation method in Animals is called instead of the
empty one in the base class.

The Animals class-implementation may now change at will as long as it contains all methods
of all the base classes. A software developer is able to add additional members or methods
without causing any changes to the binary class representation or size of the virtual base
classes.

2.4.1.3 Binary Interface Across Multiple Programming Platforms
Even though the public operations of the data type have been hoisted to become pure virtual
functions in an interface class, the client cannot instantiate FastString objects without
knowing the class definition of the implementation class. Revealing the implementation class
definition to the client would bypass the binary encapsulation of the interface, which would
defeat the purpose of using a virtual interface class.

The solution to this problem is to create a public function inside the DLL, which creates the
new object.

Stefan Domnanovits

 - 13 -

extern “C”
IDog * CreateNewDog()
{
 return static_cast<IDog*>(new Animals);
};

One problem resides, each class may contain dynamically allocate memory and wants to free
this memory in the object destructor. Unfortunately, this pollutes the compiler independence
of the interface class, as the position of the virtual destructor in the vtbl can vary from
compiler to compiler. One workable solution to this problem is to add an explicit Release
method to the interface as another pure virtual function where the derived class deletes itself
in its implementation of this method. This results in the correct destructor being executed.

To handle this self-destroying mechanism the interface should also implement basic resource
management. What now follows is an interface that includes just that.

2.4.2 IUnknown
IUnknown is the basic interface of all COM interfaces. All other interfaces used by COM
must be directly or indirectly derived from IUnknown. IUnknown is the only COM interface
that does not derive from another COM interface. The figure below shows the UML
representation of this interface.

+QueryInterface(in riid : REFIID, inout **ppv) : HRESULT
+AddRef() : unsigned long(idl)
+Release() : unsigned long(idl)

«interface»
IUnknown

Figure 2.4.2-1 IUnknown Interface

This diagram shows that at the binary level all COM interfaces are pointers to vtbls that begin
with the three entries QueryInterface, AddRef, and Release. Any interface-specific methods
will have vtbl entries that appear after these common three entries.

AddRef and Release are used for memory management and QueryInterface allows the linkage
to other derived interfaces.

Designing a COM object is now fairly simple, as shown below.

Stefan Domnanovits

 - 14 -

+QueryInterface()
+AddRef()
+Release()

«interface»
IUnknown

+QueryInterface()
+AddRef()
+Release()
+Move()
+Eat()

-m_lRefCount

«implementation class»
Animal

+Move()
+Eat()

«interface»
IAnimal

Figure 2.4.2-2 Interface Implementation

The Figure 2.4.2-2 shows the usage of IUnknown together with the implementation of an
IAnimal interface.

Implementing AddRef and Release is extremely straightforward. Animal consists of a counter,
which is incremented with each call to AddRef and decremented in the Release method.

ULONG Animal::AddRef(void)
{
 return ++m_lRefCount;
}

ULONG Animal::Release(void)
{
 long res = --m_lRefCount;
 if (res == 0)
 delete this;
 return res;
}

Release is also responsible for deleting the object itself at the moment the reference counter
reaches zero. For a real world COM object, one must implement this reference counting
mechanism little bit different, as this implementation is not thread safe. For objects in a
multithreaded environment, the Win32 InterlockIncrement and InterlockDecrement routines
should be used to adjust the reference count [5].

Stefan Domnanovits

 - 15 -

With the implementation of AddRef and Release in place the only remaining IUnknown
method to implement is QueryInterface. The following is a correct implementation of the
remaining method.

HRESULT Animal::QueryInterface(REFIID riid, void **ppv)
{
 if (ppv == 0)
 return E_POINTER;

 if (riid == IID_IAnimal)
 ppv = static_cast<IAnimal>(this);

 else if (riid == IID_IUnknown)
 ppv = static_cast<IAnimal>(this);

 else
 {
 // unsupported interface
 ppv = 0;
 return E_NOINTERFACE;
 }
 reinterpret_cast<IUnknown*>(*ppv)->AddRef();
 return S_OK;
}

The class casts itself to the derived virtual interface class if the client asks for a supported
interface. If a specific interface is not supported then the client is informed. Additionally
AddRef is called because a new reference to this class is accessed by the client. If the client
does not need the object any more Release must be called.

The object is now completely accessed through virtual methods and classes, even the lifetime
and destruction is handled by the object itself. Figure 2.4.2-3 shows the details.

Animal::QueryInterface
Animal::AddRef
Animal::Release

Animal::Move
Animal::Eat

vptr
m_lRefCount

IUnknown

IAnimal

Figure 2.4.2-3 Animal Implementation Detail

All methods from IUnknown and IAnimal are retransferred to the Animal implementation
class.

Stefan Domnanovits

 - 16 -

2.4.3 Interface Definition Language (IDL)
The motivation for separating interface from implementation class was to hide from the client
all details about an object’s inner workings.

Although this last aspect is useful, it does not go far enough in providing a universal substrate
for binary components. The important observation is that while clients can use any C++
compiler they choose, ultimately they must use a C++ compiler. The techniques described in
the previous chapters provide compiler independence. Ultimately, programming language
independence is what is needed for the XML Server. To achieve language independence
COM applies the principle of separation of interface from implementation one more time.

To decouple the interfaces from the language used by any particular implementation, one
must separate the language used for defining interfaces from the language used to define
implementations. If all parties agree on a single language for defining interfaces, it is possible
to define the interface once and derive new implementations language-specific mappings, as
they are needed. This language is called the Interface Definition Language or IDL.

The Win32 Software Development Kit (SDK) includes an IDL compiler called MIDL.EXE
that parses COM IDL files and generates several artifacts.

Animal.IDL
Abstract Type Defintions

MIDL.EXE

Animal.h
C/C++ Type Definitions

Animal_I.C
GUID Definitions

Animal.TLB
Tokenized IDL File for

Visual Basic, Jave, etc.

Animal_P.C
Interface Marshaler

Defintions

DllData.C
Interface Marshaler

Inprocess Server Code

Figure 2.4.3-1 Using MIDL

Stefan Domnanovits

 - 17 -

As shown in Figure 2.4.3-1, MIDL generates C/C++ compatible header files that contain the
abstract base class definitions that correspond to the interfaces that are defined in the original
IDL file. It also generates source code that allows the interface to be used across thread,
process, and host boundaries.

MIDL additionally generates a binary file that allows other COM-aware environments to
produce language mappings for the interfaces defined in the original IDL file. This binary file
is called a type library and contains tokenized IDL in an efficiently parsed form.

IDL allows interface designers to work mainly in the logical realm using C-style syntax.
However, IDL also allows interfaces to precisely specify any aspects of an interface that
cannot be derived directly from its C-style logical description using annotations that are
formally called attributes. The next lines show the IDL definition of the IUnknown interface.

[
local,
object,
uuid(00000000-0000-0000-C000-000000000046)

]
interface IUnknown
{

HRESULT QueryInterface ([in] REFIID riid,
[out] void **ppv);

ULONG AddRef(void);
ULONG Release(void);

}

As one can see some elements contain additional attributes like local or object for the
interface or out in the QueryInterface parameter definition.

The animal definition may look like this:

[
object,
uuid (62E09C14-9FB1-4aa6-884E-E5DAD1171EA2),
helpstring(“Base interface of all animals”)

]
interface IAnimal
{

HRESULT Move(void);
HRESULT Eat(void);

}

The most important attribute is uuid. This attribute serves as a unique identifier.

Global Unique Identifiers (GUID) are used to eliminate name collisions. GUIDs are used
throughout COM to name static entities, such as interfaces or implementations. GUIDs are
128-bit extremely large numbers that are guaranteed to be unique in both time and space.
When used to name COM interfaces, GUIDs are often called Interface IDs (IID).

Stefan Domnanovits

 - 18 -

Implementations in COM are also named using GUIDs, and in this context, GUIDs are
referred to as Class IDs or CLSIDs. When represented textually, GUIDS are always displayed
in the following canonical form:

62E09C14-9FB1-4aa6-884E-E5DAD1171EA2

These 32 hexadecimal digits represent the 128-bit value of the GUID. The algorithm used to
create these identifiers includes the local machine’s network interface address, wall clock
time, and a pair of persistent counters to compensate for clock resolution and abnormal
system clock changes.

2.4.4 COM Threading
A thread is a path of execution through the code in a process. It has its own call stack and
CPU state. Modern operation systems can juggle hundreds of threads to create the illusion
that these threads are running simultaneously, even on a machine that has only a single CPU.
The operating system does this by assigning a quantum of CPU time to each thread. When
this unit of time is complete, the operating system saves the state of the CPU associated with
that thread and then gives another thread a chance to run for a quantum of time.

COM organizes thread safety on an object-oriented level. This means the following. The state
of an object is defined through its member variables. These variables are sometimes referred
to as the per-instance state of a class. COM provides an effective threading mechanism where
the developer has not worry about thread safe variable access. Or at least he decides if wants
to be responsible for the complete thread synchronization.

For the object synchronization scheme to work, a COM client must have some way of
indicating whether it uses COM objects across multiple threads or not. The client thread does
this with a call to one of the Win32 API function CoInitialize or CoInitializeEx. According to
the parameter of this functions the COM objects are going to reside in a Single-Threaded
Apartment (STA) or a Multi-Threaded Apartment (MTA).

If the object resides in the process of the client, the COM object itself must also indicate if it
is thread safe or not. This is done in the registry. The ThreadingModel registry key can be
found at this location:

HKEY_CLASSES_ROOT\CLSID\{CLSID_OF_THE_CLASS}\ThreadingModel

It is string type, which may contain the values Single, Apartment, Free, Both and Neutral.

• Single Objects of this class are pathologically unthread-safe. Not only are the objects
not thread-safe, the class factory which creates the instances, and the DLL entry
functions are also not thread safe. This means a single thread must execute all the code
in this server to prevent possible synchronization errors, which sure would happen if
variables were accessed from multiple threads.

Stefan Domnanovits

 - 19 -

• Apartment Objects in this class do not protect their per-instance state from
multithreading problems. Access to each instance must be limited to a single thread.
But, the per-class state for this class and the class factory and the DLL entry functions
are thread-safe.

• Free COM objects of this class protect their per-instance state and per-class state from
multi-threading problems using thread synchronization primitives, such as critical
sections or mutexes. These objects are safe to use in a multi-threaded environment.

• Both Objects of this class are instantiated in the same apartment as their client so they
can, for maximum performance, execute on their caller’s thread. Because they may
run in a multi-threaded enviroment, these classes should protect their per-instance
state and per-class state (static member variables) from multithreading problems.

• Neutral Objects of this class also execute on their caller’s thread, but they reside in
their own apartment, the Thread Neutral Apartment (TNA), rather then residing in
their caller’s apartment. Because any thread (STA or MTA) in a process can enter the
TNA at any time, objects marked as Neutral must either use thread-synchronization
primitives to make themselves thread-safe, or they can use the thread synchronization
service by the COM+ runtime3.

Once the objects and the threads in a process have indicated which apartment they belong to,
the COM runtime can make sure the concurrency requirements for each objects are adhered to
by restricting which threads are allowed to call methods on a particular COM object.

2.4.4.1 Marshaling
These restrictions are very strict but COM also introduces a mechanism that allows interface
pointers to be passed across apartment boundaries. This technique is called marshaling.
Marshaling an interface pointer simply transforms the interface pointer into a transmissible
byte stream whose contents uniquely identify the object and its owning apartment. This byte
stream is the marshaled state of the interface pointer and allows an apartment to import the
interface pointer and make method calls on the object. These marshaled object-references
simply contain connection establishment information that is completely independent of the
object’s state.

When an in-process activation request is made for a class with an incompatible threading
model, COM implicitly marshals the interface from the object’s apartment. Table 2.4.4-1 list
all possible modes and when marshalling occurs.

3 In the COM+ environment all objects should be programmed stateless (without state defining members) or use
the COM+ Shared Property Manager ([4] Page 484).

Stefan Domnanovits

 - 20 -

Threading Model MTA Primary STA Other STA

Single Marshaled Direct Marshaled

Apartment Marshaled Direct Direct

Free Direct Marshaled Marshaled

Both Direct Direct Direct

Neutral Marshaled Marshaled Marshaled

Table 2.4.4-1 COM Marshalling

The Primary STA is the thread that first of all others instantiates the COM object.

The custom marshalling happens in proxy/stub DLLs. These DLLs handle the incoming
Remote Procedure Calls (RPC) and translate the interface calls and parameters into byte
streams.

For STAs the marshalling is arranged through the standard windows messaging mechanism as
shown in Figure 2.4.4-1. [9]

Post Message

RPC Runtime
or Client Threads

GetMessage

In
vo

ke

Interface Stub STA-Based
Object

IRPCBuffer
IAnimal

IUnknown IUnknown

STA
Thread

Figure 2.4.4-1 Singlethreaded Apartment Call Dispatching

To enter the STA and dispatch the call to the STA’s thread, the RPC thread uses the
PostMessage API function to enqueue a message into onto the STA thread message queue.
This means that to finish dispatching the call, the STA thread must service the queue via some
variation of the following code:

MSG msg;
while (GetMessage(&msg, 0, 0, 0))
 DispatchMessage(&msg);

Stefan Domnanovits

 - 21 -

2.4.5 Extended Error Information
The COM standard also consists of a few more interface than IUnknown. Three of them, also
used by the XML Server are ISupportErrorInfo , ICreateErrorInfo and IErrorInfo.

+GetDescription()
+GetGUID()
+GetHelpContext()
+GetHelpFile()
+GetSource()

«interface»
IErrorInfo

+SetDescription()
+SetGUID()
+SetHelpContext()
+SetHelpFile()
+SetSource()

«interface»
ICreateErrorInfo

+InterfaceSupportsErrorInfo()

«interface»
ISupportErrorInfo

Figure 2.4.5-1 Error Information Interfaces

When an error occurs, a COM object that implements InterfaceSupportsErrorInfo may send
rich error information to its client by first calling the CreateErrorInfo function in the COM
API to create a COM exception object. Then COM object can use the ICreateErrorInfo
interface to poplulate the COM exception object with the source, description, help file, and
help context ID for the error that just occurred. Once the exception object is populated with all
the necessary error information, the exception object can be send the to its client by first using
QueryInterface to obtain the IErrorInfo interface on the exception object and then passing this
interface to the SetErrorInfo function as shown in next lines.

HRESULT Animal::Eat() {
 HRESULT hr;
 try {
 /* …*/
 }
 catch (…) {
 ICreateErrorInfo pCreateErrorInfo = 0;
 CreateErrorInfo (&pCreateErrorInfo);
 pCreateErrorInfo->SetGUID(IID_IAnimal);
 pCreateErrorInfo->SetDescription(L”Nothing to eat.”);
 IErrorInfo pErrorInfo;
 pCreateErrorInfo->QueryInterface(IID_IErrorInfo,
 (void**)&pErrorInfo);
 SetErrorInfo(0, pErrorInfo);
 pCreateErrorInfo->Release();
 pErrorInfo->Release();
 return E_NOTHING_TO_EAT;
 }
 return hr;
}

Stefan Domnanovits

 - 22 -

2.4.6 DCOM
Distributed COM (DCOM) is that part of COM concerned with enabling COM-based
software components to be used over a network. This means that DCOM enables a COM
server on one machine and have it used by a client on a different machine. This enables
developers to build applications that work together with two, three, four, or even dozens of
PC’s that exchange and share information. These are enterprise applications that in the not too
distant past could only run on mainframe or midrange computers.

Unfortunately, building enterprise class applications introduces new problems, some of them
are addressed by DCOM and some are not. Security is an example. These applications need
the ability to restrict certain individuals from accessing the information while allowing others
to use it. DCOM provides this functionality.

However, the XML Server has not only the goal of distributed processing, it also requires
scalability and data-integrity. Scalability means the application should be able to handle
simultaneous use by hundreds or even thousands of users.

Data integrity means that updates to data-stores must be made in a consistent way (data must
not be corrupted or lost) even in the face of simultaneous use by numerous users. DCOM does
not provide this functionality: COM+ and the Microsoft Transaction Server (MTS) do. These
technologies are build on top of DCOM. Understanding DCOM is important if one wants to
understand COM+ and MTS.

2.4.6.1 The Service Control Manager
Figure 2.4.6-1 shows a diagram of the DCOM network communication. When a client makes
an object activation request the Service Control Manager (SCM) is called to locate the object.

Client Host

OLE32.DLL

Marshaling DLL

Proxy

Client Process

Local SCM

Server Host

Local SCM

OLE32.DLL

Marshaling DLL

Stub

Server Process

Figure 2.4.6-1 DCOM Communication

The SCM takes the CLSID that is passed to CoCreateInstance and searches in the registry for
its key beneath HKEY_CLASSES_ROOT\CLSID\ in the system registry. When the SCM

Stefan Domnanovits

 - 23 -

finds the key in the registry it searches for either an InprocServer32 or a LocalServer32 key.
If it finds InprocServer32, it loads the DLL identified in the default for the key into the client
process. If it finds a LocalServer32 key, it starts up the executable and establishes an Inter-
Process Communication (IPC) link between the client and the server.

If there is neither of these two keys the SCM next searches for the following key in the
registry:

 HKEY_CLASSES_ROOT\AppID\

Each COM Server creates a registry entry below this key. Beneath this AppID security-related
information for a server and a key called RemoteServerName is stored. The
RemoteServerName key identifies a remote machine where the server can be found. This
can either be an IP address or the domain name of the remote machine on which the remote
server is resident.

If the SCM finds this key, the SCM on the remote machine is contacted and a request is made
that this machine starts the server and returns a proxy. The SCM on the remote machine first
verifies that the requesting user is authorized to use this server, sets up a stub in the server
process and returns a proxy to the client. After the client has the proxy, all further
communication occurs directly between the proxy and the stub as shown above.

Because both the client machine and the server machine require marshaling support, the
marshaling DLL must be installed and registered on both machines if the COM server wants
to implement custom interfaces. If the server is just using standard interfaces, marshaling
support is provided by the ole32.dll.

2.4.6.2 Security
The single most important issue that DCOM adds to COM is security. When running a COM
client and server on the same machine, the only security needed is that which is required to
prevent users from logging into the machine. Once running clients and servers on separate
machines several different forms of protection are needed.

• Authentication That means it must be able to determine in an accurate and un-
subvertible way, the identity of the user who is attempting to use the COM server.

• Access Control One may want to give some users full access to the COM server,
others may have access to only certain features, but would be restricted from using
other ones and some would be denied access for others completely.

• Security Token Management Some of the issues involved here are: with whose
security token should a COM server process run? Should it run with the clients
security token, the security token of whomever is logged in to the server at the
moment, or perhaps some other token.

DCOM takes care of all forms of protection. There are two ways of configuring the
communication security between the client and the server: via the registry or
programmatically. Usually the security is not programmed hard coded into the source code.

Stefan Domnanovits

 - 24 -

Instead the network administrator using the MS Windows tool DCOMCNFG.EXE configures
it [13].

2.5 THE NEXT STEP: COM+
COM+ was introduced with Windows 2000 and is a set of system services that are designed
to make it easy to develop enterprise-class distributed applications. COM+ is really just a
runtime environment for COM objects. This runtime environment provides the following
services to COM objects:

• Fine-gained security

• Distributed transactions,

• Thread synchronization,

• Load balancing,

• Asynchronous store and forward method invocation,

• Enhanced scalability through just in time activation

• Pooling of objects and database connections.

In order to use this runtime environment COM objects must be implemented as an in-process
server and then configured to run within the COM+ runtime environment. Then it is possible
to select services to be applied for that object. Windows 2000 provides a graphical tool called
the Component Services Explorer that provides just that.

Each COM+ Server application runs in its own process. Actually the server application runs
in a surrogate process that is provided by COM+. Each surrogate process is an instance of
DLLHost.exe as shown in Figure 2.4.6-1.

Proxy
Stub

Client Process In-Process Server

Surrogate Process
(dllhost.exe)

Figure 2.4.6-1 Surrogate Process

As with all out of process COM objects they must be accessed through proxy/stub
marshaling.

Stefan Domnanovits

 - 25 -

2.5.1 COM+ Context
The COM+ Context is the runtime environment in which one or more compatible COM+
objects in a particular process execute. Compatible objects are objects that share the same
runtime requirements, i.e. they have the same settings of their COM+ attributes. A Context
resides in an apartment within a process as displayed in Figure 2.5.1-1. An apartment can
contain one or more Contexts and a Context can contain one or more objects.

Context

MTA Apartment

Context Context

STA Apartment

Process

Figure 2.5.1-1 Processes, Apartments, and Contexts

When the COM+ runtime first creates the Context for an object, it reads the settings for the
COM+ attributes (security, transaction, object pooling, …) that are configured for the object’s
class from the COM+ catalog. These settings are stored in a system-created COM object
called an Object Context. This Object Context can be used to retrieve and modify context
information. Calling the new Windows 2000 API function called CoGetObjectContext
retrieves this Object Context. Figure 2.5.1-2 shows the interfaces that are supported.

IUnknown

IObjectContextInfo
IContextState

IGetContextProperties

IObjectContext
IObjectContextActivity

ISecurityProperty

Figure 2.5.1-2 The Object Context

Stefan Domnanovits

 - 26 -

• IContextState Controls object deactivation and transaction voting by manipulating
context state bits. Calling the methods of this interface sets consistent and done bits
independently of each other and get the current status of each bit.

• IObjectContextInfo Returns transaction, activity and context information on the
current context object. Using the methods of this interface, you can retrieve relevant
information contained within an object context.

• IGetContextProperties Provides access to object context properties.

• IObjectContext Provides access to the current object’s context.

• IObjectContextActivity Used to retrieve a unique identifier associated with the
current activity. This activity identifier is a GUID, and is only valid for the lifetime of
the current activity.

• ISecurityProperty Used to deremine the security ID of the current object’s original
caller or direct caller.

2.5.2 Just in Time Activation and Object Pooling
Often it takes a long time to instantiate a server object. Therefore DCOM developers often
write client applications where they instantiate all the objects they need when they are started
and then hold on to those objects for the life of the application. While this is simple and seems
more efficient from the client’s perspective this ruins the scalability of the server. A thousand
clients may be holding onto their object references but it is likely that only a small number of
those are actually executing a method at any given moment.

The idea behind the COM+ services Just in Time Activation and Object Pooling was to make
it easier for developers to reuse objects without having to think about object management
routines. When an object sets its Deactivate-On-Return bit, the COM+ runtime deactivates the
object. The object is either destroyed or returned to the object pool (depending on the setting
of the object pooling attribute). However, the client still holds the proxy for the object, the
RPC Channel is in place an the stub still exits.

With object pooling, the COM+ pool manager maintains a pool of objects, as shown in Figure
2.5.2-1. When a client attempts to activate an object of that type, the COM+ runtime returns
an instance from the pool if one is available, instead of creating a new instance from scratch.

The client can use this object for as long as it takes. When the client releases its last reference
to the object, or the object returns from a method with its deactivate-on-return bit set, the
object is deactivated. Instead of being destroyed, the deactivated object is returned to the
object pool. A COM+ component must meet the following requirements before it can be
pooled.

• It must reside in the Thread Neutral or Free-Threaded Apartment of a process.

• It must be stateless. That means it must not have any state defining member variables.

• It must not have thread affinity

• It must be aggregateable4.

4 See in [5] for a detailed description about COM Aggregation.

Stefan Domnanovits

 - 27 -

Pooled
Object

Pooled
Object

Pooled
Object

Object Pool

Pooled
Object

Pooled
Object

Server Process

Client

Client

Deactivation

Activation

Figure 2.5.2-1 Object Pooling

If an object meets all these requirements a minimum and maximum number of pooled objects
can be specified in the COM+ runtime environment.

2.5.3 Transactions

2.5.3.1 What Is A Transaction?
A transaction is a series of operations that have the following properties5:

• Atomicity

• Consistency

• Isolation

• Durability

One can understand what these four properties mean by considering what happens when
going to the bank and deciding to transfer $500.00 from one bank account to another. There
are actually two operations that take place in completing this operation: (1) $500.00 is
withdrawn from account, and (2) $500.00 is deposited into the other one. If both operations
succeed, everyone is a winner. But what would happen if the bank’s computer failed in the
middle of the account transfer operation. There is not an acceptable outcome. Both operations
must succeed or they both must fail. This is what Atomicity means. Consistency, in this
example, means the amount deposited into one account should match the amount deposited
into the other one. Consistency is enforced by application logic with the help of a Database
Management System (DBMS) and/or a Transaction Processing Monitor.

5 Defined by [4], page 472.

Stefan Domnanovits

 - 28 -

Isolation means that a separate transaction that is executing concurrently with another account
transfer should not see an invalid intermediate state such as $500.00 has been withdrawn on
one account but has not yet been deposited. Isolation is usually implemented using locking.

The Durable property of a transaction means that after the transaction is committed, the
updates made by the transaction should never be lost. A system crash, network failure, or
even someone inadvertently pulling the power cord, should not cause updates to be lost.

2.5.3.2 Transaction Operations
Transactions have several operations to ensure all transaction properties described above are
met.

• Begin

• Commit

• Rollbak

The basic steps of using these transaction operations are shown in the pseudo-code below.

The Begin operation starts a transaction. When all the operations in the transaction are
complete, one can call the Commit function to commit the transaction.

try
{
 Transaction.Begin();

 // Withdraw $500.00 from savings account
 /* …*/

 // Deposit $500.00 into checking account
 /* …*/

 Transaction.Commit();
}
catch (…)
{
 // if anything goes wrong, rollback the entire operation
 Transaction.Rollback();
}

If the transaction fails at any time, you can call the Rollback function, which undoes
everything since the call to Begin. One can make several updates to the database, but none of
these updates are visible to anyone outside the transaction until the Commit function is called.
The Commit applies all the updates in an atomic step.

Stefan Domnanovits

 - 29 -

2.5.3.3 Distributed Transactions
Using the transaction management functions that are built into the DBMS will work okay as
long as all of the information is stored in a single database. Unfortunately, most enterprises
don’t store all their important information in a single database. In many cases, the information
is spread among many databases. Take an online retailer as an example. A database of
customer account information might be stored in an Oracle database at the corporate office.

But many e-commerce businesses do not fill their orders themselves; they simply run the Web
site and advertise. One or more partners actually fill the orders. In this situation, when the
online retailer receives an order, it must be able to send the order information to its partners.
The mechanism used to send this information could be to write directly to the partner’s SQL
Server database, or they might send a message to their partner using a message queuing
product like Microsoft Message Queue (MSMQ). In either case, the placing of the order to be
filled and the debiting of the customer’s account must be done in a secure transaction way.

Either all of the servers must commit their part of the transaction or, if any of the resource
managers are unable to commit their part of the transaction, all of them must rollback.

2.5.3.4 2 Phase Commit
The key to implement distributed transactions is the 2-phase commit protocol. In this
protocol, the activity of the resource mangers must be controlled by a separate piece of
software that is sometimes called a transaction manager or transaction coordinator. The steps
in this protocol are shown in the figures below.

 Resource Manager Transaction Coordinator Resource Manger

Prepare()

Prepare()

Succeeded()
Succeeded()

Commit() Commit()

Figure 2.5.3-1 2 Phase Commit Protocol - Transaction Commit

Stefan Domnanovits

 - 30 -

 Resource Manager Transaction Coordinator Resource Manger

Prepare()

Prepare()

Succeeded()
Failed()

Rollback()

Rollback()

Figure 2.5.3-2 2 Phase Commit Protocol – Transaction Rollback

In the prepare phase the transaction coordinator asks each resource manager to get ready for
the commit. Each resource manager is responsible to receive a state where it is able to commit
in an atomic operation. Only after all succeed messages have arrived at the transaction
coordinator then the transaction is committed. If one operation fails all of the operations that
have taken place over several resources are rolled back.

2.5.3.5 Transactions and COM+
In COM+ every COM Component may use the integrated Microsoft Transaction Service
(MTS) as transaction coordinator.

Every object is responsible for telling the MTS its current transaction state. To do this an
object must obtain its object context interface and call the appropriate methods.

+CreateInstance()
+DisableCommit()
+EnableCommit()
+IsCallerInRole()
+IsInTransaction()
+IsSecurityEnabled()
+SetAbort()
+SetComplete()

«interface»
IObjectContext

Figure 2.5.3-3 IObjectContext Interface

The methods for transaction voting are DisableCommit, EnableCommit, SetAbort and
SetComplete.

Stefan Domnanovits

 - 31 -

• DisableCommit Tells the MTS that the transaction is in an error state, but this may
change in the future.

• EnableCommit Tells the MTS that currently the transaction may be commit but work
is still in progress that would make a commit impossible.

• SetAbort Tells the MTS to rollback the transaction.

• SetComplete The object is ready to commit.

The complete transaction behavior like committing or the rollback are performed by the MTS
and the object does not have to implement any of the commit or rollback activities, which is a
great help for developing transaction safe applications. The next lines show a possible
transaction voting implementation.

HRESULT Animal::Eat()
{
 HRESULT hr(S_OK);
 IObjectContext pObjectContext=0;

 hr=CoGetObjectContext(IID_IObjectContext, (void**) &pObjectContext();
 try
 {
 // perform work here
 /* …*/

 pObjectContext->SetComplete();
 }
 catch (…)
 {
 pObjectContext->SetAbort();
 hr = E_FAIL;
 }
 pObjectContext->Release();
 return hr;
}

In the example above, the object first retrieves its own Object Context. If everything worked
out fine the MTS is told to complete the transaction. If something unexpected happens (like
an exception) the executions continues in the exception handler and the transaction is forced
to abort. At last Realease is called to free the Object Context pointer.

Stefan Domnanovits

 - 32 -

3 IMPLEMENTATION

The developed XML Server uses all of the programming techniques described above to
implement an engine, which is capable of executing commands on multiple data stores and
returning possible results as XML data. The XML Server is placed within the COM+
environment to achieve security goals, transaction safety, scalability and availability for
multiple programming languages.

The server was implemented in C++, one of the major languages available for object-oriented
programming. The implanted classes and their relations are displayed as UML diagrams
because the are much better suited to display the dependency between objects then hundreds
of lines of C++ header class definitions.

3.1 A UNIVERSAL DATA ACCESS SERVER
The XML server was developed as a middle tier data platform6 to make it easier for other
applications to retrieve data from multiple data sources where data is linked between each
other. In many companies different data platforms are used to store data, which is related to
each other, but there is not a tool available to link this data and merge it into one consistent
data form.

The data is transferred to the client as an XML file, because this allows structuring the output
of nearly every data format. It is also a great help for applications that want to transport this
data over the Internet because their already exits internet transportation protocols bases on
XML and HTML for internet services, like SOAP. Also modern browser support XML
together with a XML Style Sheet as data rendering engine. This means if the data server
already returns XML data clients have to spend less effort in data displaying engines.

3.2 IMPORTANT CLASSES AND LIBRARY’S USED
This Server was build from scratch but some additional libraries from Microsoft were used to
speed up the development process.

3.2.1 The Standard Template Library (STL)
The STL is part of the ANIS C++ standard7 this means every new C++ version must include
this library and functionality. This allows platform independency as the STL has the same
behavior under Linux as under Windows. The following classes where used extensively. For a
detailed description of the C++ standard and the STL refer to [1].

6 N tier design is described in great detail by [3].

7 The STL was added into the draft standard at the July 14, 1994 ANSI/International Standard Organization
(ISO) C++ Standards Committee meeting, and is now included in every major version of C++. The ISO C++
standard (ISO/IEC 14882) was ratified in 1998.

Stefan Domnanovits

 - 33 -

3.2.1.1 string
In C character string are pointers to the first character in a character array. This makes it
difficult for developers to handle strings in a complex manner.

The string class of the STL capsules this character pointer and exports very helpful methods
for string parsing. It also handles the dynamic allocation and deallocation of memory while
increasing or decreasing the string size.

In the XML Server the UNICODE version of string, the wstring was used. UNICODE strings
store characters in two bytes instead of one. Therefore they also allow the storage of
characters outside of the ASCII definitions. This is important in applications that use the
Chinese or Japanese character set.

3.2.1.2 vector
The vector template of the STL is a great enhancement over the build in C array type of pairs
(name, number). Because this array has a fixed size and if a larger size is chosen lots of space
is wasted.

The vector allocates the memory used to store the information dynamically. Also the vector
allows data access in a constant time that means it is as fast as a C array without the problem
of array overflow when inserting items.

In the XML Server, vectors are used to store a variable parameter list of XML Commands
because the vector template builds a small-sized parameter list type, with quick access for
parsing.

3.2.2 The Active Template Library (ATL)
The Active Template Library is a set of template classes provided and supported by
Microsoft. The ATL was primarily designed to speed up the development of COM objects. It
contains standard thread safe implementations of standard COM interfaces like IUnknown,
IClassFactory, IDispatch, ISupportsErrorInfo, etc. They handle the construction and self-
destruction of objects and provide a basic object framework for easier access to the Win32
API. For Example the ATL includes the class CWindow, which capsules a window handle,
and allows basic window manipulation.

However, as with all templates and libraries, they require a good knowledge in C++ to be
effectively used and adjusted to each developing task.

The Active Template Library is described in detail in [7].

3.2.3 Additional Helper Classes
Microsoft also provides some additional classes for handling some MS and/or COM specific
data types. Without these classes the source code would be overloaded with code fragments
just for the basic usage of that types.

Stefan Domnanovits

 - 34 -

3.2.3.1 _variant_t
The _variant_t class capsules a VARIANT structure. The VARIANT is used for
communication with scripting languages that are only loosely connected to data types. This
structure is a union capable of storing multiple data types at the same location in memory.
Scripting languages like Visual Basic Script make intensive use of VARIANTs. _variant_t
also implements conversion methods that allow quick conversion from one type into another.

3.2.3.2 _bstr_t
The _bstr_t capsules a BSTR. The BSTR must be used as string parameters in all interfaces
that will be used from Visual Basic or Java. This includes the XML Server interfaces.

length
Prefix (in bytes)

Character
Data

4 0 0 0 'H' 0 'i' 0 0 0

BSTR

Terminal
Null

Figure 3.2.3-1 "Hi" as BSTR

As Figure 3.2.3-1 shows BSTRs are length-prefixed, null terminated strings of UNICODE
characters. The length prefix indicates the number of bytes the string consumes (not including
the termination null) and is stored as a four-byte integer that immediately precedes the first
character of the string. To allow BSTRs to be freely returned from methods without concern
for memory allocation, all BSTRs are allocated from a COM-managed memory allocator. The
_bstr_t class handles these memory API functions.

3.2.3.3 _com_ptr_t
This class is a smart pointer template that manages a COM interface pointer. A smart pointer
uses reference counting as a mechanism for freeing the encapsulated pointer8. COM pointers
already include reference counting therefore this smart pointer uses the IUnknown AddRef
and Release methods for counting and destruction.

The #import directive[12] from the MS Visual Studio also uses _com_ptr_t as base class for
all interface wrappers. The advantage is that the developer is not forced to take care of
missing AddRef or Release calls.

8 There are other mechanisms of automatically freeing allocated memory. For example the STL auto_ptr uses an
ownership indicator, which ensures that the pointer is deleted only once.

Stefan Domnanovits

 - 35 -

3.3 SERVER DESIGN

3.3.1 Raw Concept

SQL Server Oracle Fabasoft Components

Server

XML Application

SAP
Figure 3.3.1-1 Basic Server Design

Figure 3.3.1-1 shows the part of the server in the information chain. The Server has contact
with the different types of data stores. Therefore the server should be able to handle different
kinds of data. Like relational data stored in the SQL Server or an Oracle Database. The server
should also be able to understand other data sources like the data stored in Fabasoft
Components (FSC). This is a middle ware application, which capsules a relational database
and enables developers modeling of business objects and workflows. FSC does not store the
logical data in tables; instead data is stored as different types of objects.

The Server should also be extensible and be able to handle future types of data. This is
achieved by using plugins that can be added into the server. Some plugins have been
developed as a standard complement to the server. But developers from other companies or
customers may also build their own customized plugins, as the communication interface is
freely distributed.

3.3.2 Plugin Design
Figure 3.3.2-1 shows the basic server structure and dataflow of the XML Server. The server
talks to the different data stores through special plugins, which are integrated within the
server. These plugins communicate with the store and translate the specific data to separate
XML streams.

Stefan Domnanovits

 - 36 -

Then these streams are transformed and merged together to one big XML Document.

Store 1

A B

C

XML Server

A

Store 2 Store 3

XML

B

Figure 3.3.2-1 XML Server Function Design

Another feature is that the data flow takes part in a distributed transaction. Meaning that if an
error occurs, the whole transaction is rolled back to the beginning and appropriate error
handling can be processed. This is extremely important when writing data back to the data
stores.

Using plugins to translate the store specific data into the generally used XML format gives the
server the possibility to merge data from different stores into one consistent data format.
Consider the following XML Files

Store 1 Data

<result>
<droid>
<type>Repairs</type>
<name>R2D2</name>
<owner>Skywalker</owner>

</droid>
</result>

Store 2 Data

<result>
<person>
<name>Skywalker</name>
<rank>Commander</rank>
<locat>Endor</locat>

</person>
</result>

These two results are connected to each other. If one result set comes from an SQL Server
database and the other one from an Oracle database it is very different to connect these two
records and create a new more informative one.

With the help of the plugins the server is now able to merge these two data elements together
into one logically connected form.

Stefan Domnanovits

 - 37 -

The two XML files above could for example build the following new record.

<person>
<name>Skywalker</name>
<rank>Commander</rank>
<location>Endor</location>
<equipment>
<droid>
<type>Repairs</type>
<name>R2D2</name>

</droid>
</equipment>

</person>

The XML Server achieves this functionality to merge data and build an XML data tree of
results with its own XML Command stucture.

3.3.3 XML Server Command Structure
The XML Data can be retrieved with so called XML Commands. Each XML Command can
contain any number of additional subcommands, as shown in Figure 3.3.3-1.

XML Main Command

XML Sub Command

XML SubCommand

XML Sub Command

XML Sub Command

XML Sub Command

XML Sub Command

Figure 3.3.3-1 XML Server Command Structure

This XML command tree is put under an XML Main Command. This XML Main Command
is identified by a name. The client uses this name as a reference if it wants to execute such
commands. Each XML Sub Command contains numerous properties:

• Command Name Every command has a name. This name is used as XML tag root
name for all data that is returned of this command.

• Data Source Each command can have its own data source independent of the data
sources of the parent and/or child commands.

Stefan Domnanovits

 - 38 -

• Command String This command string is forwarded to the data source plugin. The
plugin has to interpret this string and translate it into data source specific commands.

• Record Name The XML Server assumes that it receives a list of XML sub data tags.
This attribute specifies the name that one of the XML sub elements will receive.

• Default Parameter List Each command contains its own list of parameters, which
could be parsed into the command string.

The XML Server executes each Sub Command and collects all the XML results from the
plugins. These XML results are merged together to one XML Main Command result stream.

3.3.4 XML Command Parameters
Each XML Command can have specific parameters. Every data member already collected
from parent XML commands or from the main command can serve as a parameter for each
XML Sub Commands.

XML Main Command Parameter 0;1 0;2 0;3

XML Sub Command Result 1;1 1;2 1;3

XML Sub Command Result 2;1 2;2 2;3

XML Sub Command use 0;2 1;3 2;3

Figure 3.3.4-1 XML Server Parameter Usage

Each main command parameter and each XML result value can be addressed with two values.
The first one is the command level starting with zero from the main command level. The
second one is the result index starting with one containing each previously returned XML data
content.

This parameter structure makes it possible to link results from different data sources with each
other. If for example one data source returns the national insurance number as a result then it
is possible to search with this number in another database resulting in additional data
corresponding to this number.

3.4 SERVER IMPLEMENTATION

3.4.1 XML Server Interface
This is the connection point for each client who wants to communicate with the XML Server.
Figure 3.4.1-1 shows all interfaces and their relationship supported by the server. IUnknown is
as told before the basic interface of all COM objects. IDispatch is implemented to enable
Scripting Languages like VB Script or JScript to use this server. IObjectControl is used by the
COM+ environment to signal object pooling events. ISupportErrorInfo is implemented for
returning textual error information.

Stefan Domnanovits

 - 39 -

+AddRef()
+Release()
+QueryInterface()

«interface»
IUnknown

+Activate()
+CanBePooled()
+Deactivate()

«interface»
IObjectControl

+InterfaceSupportsErrorInfo()

«interface»
ISupportErrorInfo

+GetTypeInfoCount()
+GetTypeInfo()
+GetIDsOfNames()
+Invoke()

«interface»
IDispatch

+GetXMLData()

«interface»
IXMLServer

Figure 3.4.1-1 XML Server Interfaces

The interface that gives the server all its power is IXMLServer. The figure below shows this
interface in detail.

+GetXMLData(in bstrcommand : BSTR, in returntype : long, in bstrxmlprefix : BSTR, out pbstrxml : BSTR) : HRESULT

«interface»
IXMLServer

Figure 3.4.1-2 IXMLServer Interface

The Interface again consists of only one method. This method has the following parameters:

• bstrcommand: This is the reference to the Main XML Command as a string.
Command parameters may be added as strings separated by space.

• returntype: defines the type of the return value. Specifies to return the XML either as
a Stream or as the name of a file located on the hard disk.

• bstrxmlprefix: The client can specify a prefix, which precedes the XML stream. This
is useful for linking to a style sheet or to specify the appropriate character set.

• pbstrxml: After command execution this parameter holds the XML stream or name of
the file.

Stefan Domnanovits

 - 40 -

3.4.2 Internal Structure
Figure 3.4.2-1 shows an UML diagram of the XML Server. Derived from IXMLServer is the
implementation class CXMLServer. Note that this class does not contain any members. This
would prevent the COM+ environment from storing instances of this object in the object pool.

+CreateInstance() : HRESULT
+Excecute() : IXMLDOMDocumentPtr
+StringToCLSID() : wstring
+IsOpen() : bool

#m_clsid : CLSID
#m_pplugin : aceXMLDatabasePtr

CXMLPlugin

+SetPlugIn() : void
+ExecuteXMLCommand() : IXMLDOMDocumentPtr

#m_bstrcommand : _bstr_t
#m_bstrconnectstr : _bstr_t
#& m_configdb : CConfigDB
#m_plugin : CXMLPlugin
#m_vecparams : wstrvector
#m_bstrcmdname : _bstr_t
#m_bstrrecname : _bstr_t
#m_ndbcmdid : long
#m_ndbcmdparentid : long
#m_ndbcmdtype : long
#m_ndbcmdlevel : long

CXMLDBSource

1
1

+InterfaceSupportsErrorInfo()
+Activate()
+Deactivate()
+CanBePooled()
+GetXMLData()
#ReportError()
#ConnectToConfigDB()

CXMLServer

+Execute()

«interface»
aceXMLDatabase

+GetXMLData()

«interface»
IXMLServer

+CollectSourceData() : HRESULT
+GetDataAsString() : _bstr_t
#PrepareData() : void

#m_configdb : CConfigDB
#m_vec_xmlrawdata : IXMLDOMDocumentPtr
#m_xmltargetdoc : IXMLDOMDocumentPtr
-m_bstrxmldata : _bstr_t

CXMLSource

+SetExecutionCmd() : void
+ExecuteFirstSubCmd() : IXMLDOMDocumentPtr
+ExecuteNextSubCmd() : IXMLDOMDocumentPtr
+GetDBSourceSubCmds() : vecDBSources
+GetDefaultParam() : wstring
+GetMainCmdShortName() : _bstr_t
#ExtractCmdInfo() : void

#m_pszconnectstr : wchar(idl)
#m_adocnfgdb : _ConnectionPtr
#m_bstrcmdname : _bstr_t
#m_xmlsources : CXMLDBSource
#m_ncmdcount : int
#m_ndbidx : int
#m_ncmdidx : int

CConfigDB

«uses»

1

1

1

1

10..*

Figure 3.4.2-1 XML Server UML Model

CXMLSource is used by CXMLServer to establish a connection to the different XML sources
and to collect the multiple XML strings. It holds a member of CConfigDB to extract the
configuration data from the configuration database. CXMLSource also starts the execution of
all root XML Sub Commands associated with the given main command.

CConfigDB then instantiates a CXMLDBSource object for each XML command. These
objects receive a CConfigDB class as a reference member. This allows the CXMLDBSource

Stefan Domnanovits

 - 41 -

objects to start a recursion, which is necessary to navigate through the whole command tree.
CXMLPlugin is a wrapper class that capsules the COM plugin associated with each specific
datasource.

Lets have a look at the XML Server entry point, the GetXMLData method of CXMLServer.
Commentary has been removed to shorten text.

STDMETHODIMP CXMLServer::GetXMLData(BSTR bstrcommand,
 long returntype, BSTR bstrxmlprefix, BSTR *pbstrxml)
{
 HRESULT hr(S_OK);
 IObjectContext pobjectContext = NULL;
 hr = GetObjectContext(&pobjectContext);
 try {
 // Instantiate CXMLSource and write result data to pbstrxml
 /*…*/
 }
 catch(_com_error &e) {
 Error(LPCTSTR((e.Description().length()) ? e.Description() :
 e.ErrorMessage()), e.GUID(), e.Error());
 hr = e.Error();
 }
 catch(aceXMLException &e) {
 hr = e.GetHResult();
 ReportError(_bstr_t(e.what()), e.GetGUID());
 }
 catch(...) {
 hr = RPC_E_SERVERFAULT;
 }
 if (pobjectContext)
 {
 if (FAILED(hr))
 hr = pobjectContext->SetAbort();
 else
 hr = pobjectContext->SetComplete();
 pobjectContext->Release();
 }
 return hr;
}

As anyone can see above the XML Server uses exception handling for error reporting.
Exception handling is a common mechanism in C++ to transfer errors. It helps to improve the
readiness of source code, as the developer is not forced to write error-handling code at many
different positions in the project9.

9 For detailed information about how to use exception handling I recommend [15].

Stefan Domnanovits

 - 42 -

The XML Server deals with different kinds of exceptions. First there are the _com_error
exceptions. This is a Microsoft-specific exception used by smart_ptr_t. This exception is
thrown to report errors from client COM instances. This is a very powerful class as it also
includes functionality to transport rich error information supplied by IErrorInfo.

Then there is the aceXMLException. This is a self-defined class to transport error information
from inside the XML Server algorithm to a central error handling routine. That means to this
exception handler in the XML Server entry method.

There is also a default exception handler included, which catches all other exceptions. In
theory this should never happen. But it is difficult to predict that there will never ever be an
invalid pointer or something like that.

3.4.3 The Plugins
The plugins are the only communication interface to the different data sources outside of the
XML Server. The plugins have to be COM+ objects that have themselves registered in the
windows registry. The CLSID of this plugins have to be entered into the server configuration.
This CLSID may then be linked to any desired XML Sub Command. During command
execution the server reads this CLSID from the configuration database and instantiates the
corresponding plugin object.

3.4.3.1 Plugin Interface
The plugins have to support a few specific interfaces to allow communication with the server
(Figure 3.4.3-1). The IUnknown, IDispatch, IObjectControl and ISupportErrorInfo interface
are provided for the same purpose as in the server object.

+Execute()

«interface»
aceXMLDatabase

+InterfaceSupportsErrorInfo()

«interface»
ISupportErrorInfo

+AddRef()
+Release()
+QueryInterface()

«interface»
IUnknown

+GetTypeInfoCount()
+GetTypeInfo()
+GetIDsOfNames()
+Invoke()

«interface»
IDispatch

+Activate()
+CanBePooled()
+Deactivate()

«interface»
IObjectControl

Figure 3.4.3-1 Required XML Server Plugin Interfaces

Stefan Domnanovits

 - 43 -

The main communication interface between the server and the plugins is aceXMLDatabase. It
currently contains only one method named Execute. This method has four parameters shown
in Figure 3.4.3-2.

+Execute(in bstrdatabase : BSTR, in bstrcommand : BSTR, in ntype : long(idl), out pixmldocument : object(idl)) : HRESULT

«interface»
aceXMLDatabase

Figure 3.4.3-2 The aceXMLDatabase Interface

• bstrdatabase: Allows the plugin to identify the target database

• bstrcommand: A plugin specific command to specify the data to retrieve

• ntype: Another plugin specific parameter to give more detailed information of the
command type.

• object: This is the return parameter. If the execution of the command is a success, this
value holds the XML Data in form of the Microsoft XMLDOM Document. It is also
possible that is parameter itself holds an XML return stream.

3.4.3.2 Plugin Internals
As a result of the binary encapsulation with COM interfaces the plugins may have any
internal structure as long as the interface stays the same. But in order to maintain stability,
scalability and data consistency the plugin implementations should follow a few guidelines.

• Transactions This is maybe the most important one. It doesn’t cost much effort to tell
the MTS the current transaction status, but it makes life a lot easier when the data has
to be kept consistent.

• Rich Error Information The plugin should support the error mechanism shipped
with COM. This error messages are forwarded to the server and then to the user or
administrator. This makes using the server a lot easier because a message text like
“Invalid attribute definition” is more usable then an error code or the default server
error message “unspecified error”.

• Stateless Objects Building stateless classes greatly enhances the server performance
when accessed from multiple clients as it is not required to create as many plugin
instances as client connections. This reduces main memory usage and increases
scalability.

• Default Exception Handler Exceptions are not allowed to cross COM interface
borders. Therefore it is advisable to implement a default exception handler (catch(…)).
Otherwise the only information the XML Server receives is from the Service Control
Manager that an exception has occurred in one of the COM plugins, but no additional
information is available.

Stefan Domnanovits

 - 44 -

3.4.3.3 The Fabasoft Components Plugin
Two plugins have been developed during the XML Server project. One for gaining access to
data sources supporting OLEDB and ODBC and another one to another middle tier
application called Fabasoft Components (FSC). Developing the OLEDB Plugin was an easy
task because OLEDB sources return data in a table. This table can easily be displayed as an
XML result set. But he FSC kernel represents data not in tables. Instead it directly exposes
objects with members and methods. These objects can be heavily linked with each other
through FSC attributes like object references, back links, aggregates etc.

FSC has its own query language to retrieve objects from its object store. These language is
similar to SQL but has a little different syntax and FSC specific extensions. For example to
get all WinWord documents containing the word “invoice” in its subject the query must look
like this.

SELECT COOSYSTEM@1.1:objname
FROM COOMSOFFICE@1.1:WinWordObject
WHERE COOSYSTEM@1.1:objname LIKE "*invoice*"

The result is a list of COM object pointers that match the above criteria. The result is not a
result table like that from a relational database. Instead it is a list of objects with properties
and methods.

Figure 3.4.3-3 shows the plugin in more detail. The plugin implementation class is derived
from the aceXMLDatabase interface. This is the server/plugin communication interface as
described above. Another problem is the allocation of memory from each FSC kernel. Each
one allocates at least 50 Mbytes of memory, only for startup.

Therefore a developer must be careful. During the development process the programmer tests
his software only with one XML Command at the same time and may not recognize what
happens if five, ten or more commands are processed at the same time. This can easily put the
server to its knees and makes a problem for scalability.

As anyone can see the FabasoftComponents member of CXMLFSCPlugin is declared static.
This means only one instance is created regardless of the number or plugin instances. To do
so, this usually requires to implement special safety mechanism to ensure data safety for
working with multiple threads. But in this case a COM Interface also encapsulates the target
data10. COM objects are by default thread safe; every COM object must ensure thread safety
by default11. Thus a special thread synchronization mechanism for accessing shared data from
FSC is not necessary.

10 Fabasoft Componentes also uses COM as primary communication interface.

11 As described in chapter 2.4.4 COM Threading.

Stefan Domnanovits

 - 45 -

+Execute()
+Activate()
+CanBePooled()
+Deactivate()
+InterfaceSupportsErrorInfo()

-m_fsc[1] : FabasoftComponents
CXMLFSCPlugin

+ExecuteCommand() : IXMLDOMDocumentPtr
#GetComponenstData()
#SearchObjects()

-m_rt[1] : FSCRuntime
FabasoftComponents

+GetAttribValue() : wstring
+GetFullAttribPath()
+ResolveAttribsFromCommand()
#GetCooValueAsString() : wstring
#ConvertReferencesToCooAttribs()

-m_vecattribpath[1..*] : wstring
FSCAttrib

+GetObject()
+GetObjectClass()
+SearchObjects()
+SearchObjectsAsnyc()
+CreateNewRuntime() : FSCRuntime
+CreateNewTransaction()

FSCRuntime

Fabasoft
Components
(-FSC SDK-)

1

1

connects to

1

1

1
1 1

1 reference to

+Execute()

«interface»
aceXMLDatabase

Figure 3.4.3-3 FSC Plugin Internal Structure

The diagram above implies the next steps in gathering the required information. The
FabasoftComponents class uses the FSCRuntime object to instantiate the Components kernel
and retrieves the data from the FSC database. The FSCAttrib class instances are working a
translation objects. This class is capable of translating the requited object and attribute values
from FSC into strings that can represent this values in an XML stream.

Stefan Domnanovits

 - 46 -

3.4.4 Parsing the XML Commands
As told in 3.3.4 XML Sub Commands may contain any number of additional parameter
arguments. The XML Server parses the plugin specific command line and is searching for the
parsing argument character '%'. The next line shows a possible database command.

SELECT
EmployeeID, LastName, FirstName, Address

FROM
Employees

WHERE
LastName like '%(0,1)'

Then the parser reads the parameter level and index and replaces the whole argument with the
appropriate data. For example, assume the XML Main Command name is Northwind12. The
XML Server is called with the command "Nortwind D%". The plugin would receive the
following database command:

SELECT
EmployeeID, LastName, FirstName, Address

FROM
Employees

WHERE
LastName like 'D%'

This may result in the next XML Server output:

<Northwind>
<Employees>
<Employee>
<EmployeeID>1</ EmployeeID>
<LastName>Davolio</LastName>
<FirstName>Nancy</FirstName>
<Address>507 - 20th Ave. E.Apt. 2A</Address>

</Employee>
<Employee>
<EmployeeID>9</EmployeeID>
<LastName>Dodsworth</LastName>
<FirstName>Anne</FirstName>
<Address>7 Houndstooth Rd.</Address>

</Employee>
</Employees>

</Northwind>

To send a single '%' character to the plugin the database command string must write '%%'.
This sequence is replaced with single '%'.

12 The Nortwind database is an example database included with the Microsoft SQL Server.

Stefan Domnanovits

 - 47 -

3.4.5 Merging the XML Information
This parameter mechanism can now be used to link different result-sets together. As an
example a Subcommand is added to the command used above:

SELECT
TerritoryDescription

FROM
EmployeeTerritories as et
INNER JOIN Territories as t ON

et.TerritoryID = t.TerritoryID
WHERE

et.EmployeeID = %(1,1)

This Sub Command now asks the server for the value with command level and index one. As
anyone can see this is the EmployeeID from the Employee table. In each command of the
result tree, this parameter is replace with the corresponding value. The returned XML stream
looks like this:

<Northwind>
<Employees>
<Employee>
<EmployeeID>1</ EmployeeID>
<LastName>Davolio</LastName>
<FirstName>Nancy</FirstName>
<Address>507 - 20th Ave. E.Apt. 2A</Address>
<Territories>
<Territory>Wilton</Territory>
<Territory>Neward</Territory>

</Territories>
</Employee>
<Employee>
<EmployeeID>9</EmployeeID>
<LastName>Dodsworth</LastName>
<FirstName>Anne</FirstName>
<Address>7 Houndstooth Rd.</Address>
<Territories>
<Territory>Hollis</Territory>
<Territory>Portsmouth</Territory>
<Territory>Southfield</Territory>
<Territory>Troy</Territory>
<Territory>Bloomfield Hills</Territory>
<Territory>Roseville</Territory>
<Territory>Minneapolis</Territory>

</Territories>
</Employee>

</Employees>
</Northwind>

Stefan Domnanovits

 - 48 -

Every employee has now additional sub tags containing the territories each person is
responsible for.

3.4.6 Communication With The Plugins
The preferred communication between the XML Server plugin is by passing a COM reference
pointer of IXMLDOMDocument. This is an interface published by the Microsoft MSXML
type library. This library is included with the Microsoft Internet Explorer since Version 5.0.
This means the library is free and already installed if using Windows 2000.

The XML Server prefers a reference to this type of object because this object and library is
also used internally to browse and modify XML contents.

As an alternative the plugin may also send the database command result as an BSTR to the
server. This may be useful if the plugin resides on another machine where the MSXML
library is not available. The XML Server then sends this XML string to the
XMLDOMDocument, which automatically parses the string and reports if it is not well
formed. Which means it analyses the XML stream and reports possible syntactical errors. This
new XML document object is then used for further internal operations.

3.5 SERVER CONFIGURATION

3.5.1 Configuration Database Design
The configuration of the XML Server is stored in a relational database. In theory this could be
any relational database that supports SQL queries. During the project the Microsoft SQL
Server 7.0 and SQL Server 2000 were used. Figure 3.5.1-1 shows the internal organization of
the configuration database tables.

The Command table stores all Main XML Commands of the server. This table is linked over
an intermediate table with DBCommands. This DBCommands table is responsible for holding
information about all XML Sub Commands. Also the DBCmdParameter table refers to
DBCommands. DBCmdParamater contains the default parsing parameters for the commands
that will be forwarded to the different data sources. DataSource and Plugin are tables, which
store the available data sources and their plugin. Two tables are used for saving this
information to allow the administrator to register many different data sources that are of the
same type therefore may use the same plugin for data retrieval.

The connection to this configuration database is established with the Microsoft Active Data
Object (ADO) provided by the Microsoft Data Access Components (MSDAC). This allows
access via the OLEDB interface of the SQL Server. But if someone wants to store the
configuration information in an Oracle Database and wants access via ODBC no changes to
the source code would have to be made.

Stefan Domnanovits

 - 49 -

CmdDBRelation

PK CmdDBRelID

FK1 CommandID
DBID

FK2 DBCmdID

Command

PK CommandID

CommandName
TSID
CommandDescription
CommandShortName

DataSource

PK DBID

DBName
DBConnectionString

FK1 DBPlugInID

DBCommands

PK DBCmdID

DBCmd
DBCmdType

FK1 DBID
DBCmdName
DBCmdParentID
DBCmdRecordName

PlugIn

PK DBPluginID

CLSID
SupportTransaction

DBCmdParameter

PK CmdParamID

CmdParamIndex
CmdParamDefault

FK1 DBCmdID
CmdParamLevel

Figure 3.5.1-1 Configuration Database

As can be seen in Figure 3.5.1-1 the configuration data is heavily connected with each other
through foreign keys. Configuring the server on the database through editing the tables
directly or using SQL commands would ask too much from an average administrator. These
tables are also invalid in showing an overview of the commands, as they are structured in
trees. This tree view is completely lost in this database.

As a result an own administration tool was developed to simplify the administration of the
configuration database and provide a quick an logical overview of the available command
structure.

Stefan Domnanovits

 - 50 -

3.5.2 The Microsoft Management Console (MMC)
The MMC is a common tool that is used to administrate all of Microsoft’s Server
Applications. The latest versions of Internet Information Server, SQL Server, and Index
Server are all managed using the MMC. Therefore, to provide a consistent administration
tool, to which current administrators are familiar with, the MMC was chosen as the
configuration environment for the XML Server.

3.5.2.1 Snapin Overview
To handle the data in the database and to give the server administrator a quick overview about
the registered server plugins, the connected databases and the available XML commands a
configuration tool was developed to display this information.

Figure 3.5.2-1 XML Server Configuration Tool

As one can see in the figure above the tool was implemented as a Microsoft Management
Console (MMC) snapin. The MMC is the new standard configuration instrument for
administration purposes. In MS Windows 2000 the MMC takes nearly all administration tasks
of the windows system control. This has the advantage that the system administrators is not
confronted with as many different user interfaces as the network has programs installed.

As shown in Figure 3.5.2-1 the first major snapin branch displays the currently installed
server plugins with their registered data sources. The second one gives the administrator the
possibility to add new main commands with subcommands, manipulate these, define default
command parameter and execute the commands to test the XML commands.

Stefan Domnanovits

 - 51 -

Every record of the configuration database has a corresponding representation in the MMC.
This allows an easy and comfortable way of changing the XML Servers configuration data.
This includes the following elements:

• Available plugins for the server.

• Register new or delete data-sources corresponding to each plugin

• Edit each XML Command which can be executed on each data source.

• Add and Remove XML Main Commands including their subcommands.

• Add and Remove XML Subcommands from their parent commands.

• Edit XML Subcommand specifications like the command string or the data store on
which the command is executed.

• Specify default values for each XML command.

3.5.2.2 MMC Internals
Programming an MMC Snapin is not an easy task. This is because of the MMC’s data
organization, shown in Figure 3.5.2-2.

The MMC is divided into two different panes, the result and the scope pane. Each pane may
contain any amount of items. The items in the scope pane are organized as a tree. The items in
the result view are flat but may contain additional data columns.

The difficulty is that these items have no relation to each other. The scope items are not linked
in any way to the result items. This may be helpful if one wants to display data in the result
pane which is only loosely dependent of the current scope item. It is for example possible to
display any HTML document in the result pane.

Microsoft Management Console

Result PaneScope Pane

Result Pane Items

Scope Pane Items

Figure 3.5.2-2 MMC Object Organization

Stefan Domnanovits

 - 52 -

On the other hand usually the developer needs the items within a close relation because when
selecting an item in the tree view the user expects the result view to change like in the
windows file explorer. And if the Tree is expanded the user estimates to see the result items
now as a part of the tree in the scope pane.

This was one of the many reasons why the configuration tool of the XML Server took nearly
as long to develop as the server itself.

3.5.2.3 Snapin Internal Implementation
Figure 3.5.2-3 shows a brief overview about the internal class organization. Much information
is hidden to make the diagram more readable. The heart of the snapin is the CMMCBaseItem
template. Every item displayed in the MMC is derived from this template class, except the
root item of the configuration tree.

-m_dbconnection
CConfigDatabase

CPluginData

+CreatePropertyPages()
+QueryPagesFor()
+GetScopePaneInfo()
+GetResultPaneInfo()
+Notify()
+GetChildren()
+GetResultPaneColInfo()
+DeleteItem()
#InsertScopeItem()

#m_confidb : CConfigDatabase
#m_itemid : long
#m_vecpchildren : TData
#m_veccolumns : wstring

CMMCBaseItem

TData

CMainCmdData CDBCommandData

CDatasourceData

-m_configdb : CConfigDatabase
CConfigData

CCmdPackageData

1

1

1

1

1 0..* 1 0..*

1

1

11

1 0..* 1 0..*

CPluginPackageData

1

0..*

Figure 3.5.2-3 Snapin Internal Structure Overview

Stefan Domnanovits

 - 53 -

The MMC wants every item, which is put into one of the views to expose a specific COM
Interface, IResultData for result items and IComponentData for the scope items. The
CMMCBaseItem exposes both of these two interfaces at the same time, but hides this from all
other classes. Building a tree where the result pane contains the child items of the
corresponding scope item becomes now fairly simple. All that CMMCBaseItem-derived
classes have to do, is to implement the GetChildren method. The natural polymorphism of all
C++ objects takes care, that the correct implementation method is called.

The figure above shows the final structure overview of the configuration snapin.
CConfigData represents the root element. This is also the class that holds the only instance to
the Configuration Database object CConfigDatabase. All other classes receive only a
reference to this class instance. Then the tree is split into two branches. One branch that holds
the plugin and data source structure and another one, which is responsible for the management
of the XML Main Commands and XML Sub Commands.

3.6 THE SERVER CLIENTS
Writing a client is extremely simple, because all Microsoft development tools support COM
objects and allow easy usage.

3.6.1 C++ Client
A C++ client is an easy task if using the Microsoft Visual Studio because it creates wrapper
classes for the COM interface pointer with a simple link to the type library. This is done with
the keyword #import.

Using #import informs the compiler to create wrapper classes of derived of _com_ptr_t which
uses exceptions as error reporting mechanism. This simplifies the error handling as the error
routine can easily be placed on the end of the program without having the developer to worry
about any invalid method results.

The source code below shows such a possible client.

#include <iostream>
#import “aceXMLServer.tlb” no_namespace named_guids

void main()
{
 CoInitialize(); // init COM apartment

 try
 {
 // create an instance of the xmlserver
 aceXMLServer::IXMLServerPtr xmlserver;
 xmlserver.CreateInstance(CLSID_XMLServer);

Stefan Domnanovits

 - 54 -

 // execute command and write output to stdout
 std::cout << xmlserver->GetXMLData("Nortwind", 0, "");
 std::cout << std::endl;
 }

 // error hanling
 catch (_com_error &e)
 {
 std::cout << "Error: " << e.Description() << std::endl;
 }

 CoUninitialize();
}

3.6.2 Visual Basic Client
A Visual Basic (VB) client becomes even smaller. Just add the "aceXMLServer Library" to
the project references. It then becomes possible to instantiate the server.

Private Sub Form_Load()

Dim server As New aceXMLServer.xmlserver

strXML = server.GetXMLData("Northwind", 0, "")
Print strXML

End Sub

By default all errors reported by the object are handled by the VB runtime environment which
displays the error message directly to the user.

3.6.3 Client Results
These two clients are now accessing the server and requesting XML Data.. The client wants to
access information from the Northwind Database. The client wants to know all employees and
the territory each employee is responsible of.

This XML command contains 2 subcommands

The first one is

SELECT
EmployeeID, LastName, Address, Title

FROM
Employees

WHERE
LastName like '%(0,1)'

Stefan Domnanovits

 - 55 -

Containing another subcommand

SELECT
TerritoryDescription

FROM
Territories

WHERE
EmployeeID = %(1,1)

Assume that the server administrator has assigned the character '%' as default parameter for
the main command. This means if no main parameters are supported “%(0,1)“ is replaced
by '%'.

The "%(1,1)" part of the second command means: Take the result of the command in the
first command level and the first result index. During the execution runtime the XML Server
parses this command line and replaces this section with the corresponding value.

The server then displays the following XML output.

Figure 3.6.3-1 Northwind Result Set

Note that the XML Server has not only returned an XML file. It has also transformed the data
stored in linear tables of the Northwind database in an information tree with a tree-depth of 4
Layers (not including the root one).

Stefan Domnanovits

 - 56 -

4 CONCLUSION

The XML Server is a very powerful tool to collect data from multiple data sources. But it is
not a replacement of functionality of the used data stores.

For example a customer wanted to have a full text document search over several data sources.
During the design phase at the beginning of the project several terms where specified:

• The result should be returned as XML to allow easy representation in a Web Browser.
No problem, XML is the natural language of the server.

• The communication should follow transaction rules. Again no problem, the XML
Server uses the COM+ transaction services for transaction safety.

• An average skilled administrator must be able to control and supervise the server. The
XML server ships with an MMC snapin that allows the administrator full control of
the server in a clear structure.

• The full text search has to include support for the Microsoft SQL Server, Fabasoft
Components, ordinary files in the file directory and Oracle databases.

The last point is the tricky one. SQL Server has implemented an internal full text search
engine. Also a full text search with OLEDB access can be build for standard files on a hard
disk using the Microsoft Index Server. Fabasoft also stores its documents as ordinary files on
the server machine that can also be indexed by the Microsoft Index Server. The problem
results, as this customer has no license for full text indexing of an Oracle database. This
means the XML Server cannot retrieve results from a data source that is not capable of
providing the appropriate data. Therefore we had to build a new search engine from scratch to
support full text searching for all of these data providers.

On the other hand the XML Server has many advantages and supports some interesting
features.

• XML The usage of XML as data format provides a flexible way of transporting many
different kinds of data.

• COM The XML Server provides a COM interface, which enables a number of
languages to integrate this server to its data access layer.

• Transactions All Commands are handled in transactions. The usage of the MTS
enables the server to work with multiple data sources in distributed transactions.

• Scalability The server and the currently provided plugins support new COM+ features
like Just in Time Activation and Object Pooling. This results in quicker object access
and less memory usage. Therefore a higher number of clients may use the server
simultaneously.

• Easy Administration With the MMC as an established management tool to which
administrators are already familiar with, an MMC snapin was developed to provide an
easy way of administrating this server.

Stefan Domnanovits

 - 57 -

5 BIBLIOGRAPHY

[1] C++ Programming Language, The; Special Edition Bjarne Stroustrup
 Addison Wesley, 2000 ISBN 0-201-70073-5

[2] Unified Modeling Language, The Rumbaugh, Jacobson, Booch
 Addison Wesley, 1999 ISBN 0-201-30998-X

[3] Distributed Applications with Visual C++ 6.0 Scott F.Wilson
 Microsoft Press, 2000 ISBN 0-7356-0926-8

[4] COM and COM+ Programming Primer, The Alan Gordon
 Prentice Hall PTR, 2000 ISBN 0-13-085032-2

[5] Essential COM Don Box
 Addison Wesley, 1998 ISBN 0-201-63446-5

[6] COM Programming by Example John E. Swanke
 Publisher Group West, 2000 ISBN 1-929629-03-6

[7] Inside ATL George Sheperd, Brad King
 Microsoft Press, 1999 ISBN 3-86063-463-1

[8] Inside Visual C++ David J.Kruglinski
 Microsoft Press ISBN 1-57231-565-2

[9] Windows Programmierung 5. Auflage Charles Petzold
 Microsoft Press, 1999 ISBN 3-86063-487-9

[10] C++ Standard Library, The Nicolai M. Josuttis
 Addison Wesley, 1999 ISBN 0-201-37926-0

[11] XML The Annotated Specification Bob DuCharme
 Prentice Hall PTR, 1999 ISBN 0-13-082676-6

[12] MSDN Subscription Library Microsoft Corporation
 April 2001 CD 0401 Part No. X08-3708

[13] Inside Distributed COM Guy Eddon, Henry Eddon
 Microsoft Press, 1998 ISBN 3-86063-459-3

[14] Unified Software Development Process, The Jacobson, Booch, Rumbaugh
 Addison Wesley, 1999 ISBN 0-201-57169-2

[15] Exceptional C++ Herb Sutter
 Addison Wesley, 2000 ISBN 0-201-61562-2

[16] UML Konzentriert Martin Fowler, Kendall Scott
 Addison Wesley, 1998 ISBN 3-8273-1329-5

Stefan Domnanovits

 - 58 -

6 APPENDIX

6.1 PROJECT SUMMARY

This XML Server was a one-person project and has cost me a lot of work and resources, so
here is a little statistic about the project (not included is the work on this diploma thesis). It
took me

9283 lines of code (not included headers and self-written commonly used classes)

742 hours of work (official counting)

428 online minutes with a 56.6kBit modem at home

145 cups of coffee

36 bottles of beer (0.5l)

14 Puten Rio Grande mit Pommes & 2xSalat (Schnitzelhaus)

3 text markers

2 hours in a bookstore in New York to find one of the used books ([6])

1 Windows 2000 Server installation.

1 keyboard

1 mouse

 to write this server but there are still new features in my mind, which will surely find a
way into the XML Server.

Stefan Domnanovits

 - 59 -

6.2 SERVER IDL FILES
The XML Server consists of nearly 10,000 lines of code. In exchange of hundreds of pages of
C++ source code only the IDL definitions are added.

6.2.1 XML Server

import "oaidl.idl";
import "ocidl.idl";

[
object,
uuid(A3ED42B5-1C11-42CC-87EF-14F12403F8D0),
dual,
helpstring("IXMLServer Interface"),
pointer_default(unique)

]

interface IXMLServer : IDispatch
{

[id(1), helpstring("Receive XML data from one or
more predefined databases.")]

HRESULT GetXMLData(
[in] BSTR bstrcommand,
[in] long returntype,
[in] BSTR bstrxmlprefix,
[out, retval] BSTR *pbstrxml
);

};

[
uuid(D282855E-D89C-4BB7-B7C5-1FC3793556DF),
version(1.0),
helpstring("aceXMLServer Library")

]
library aceXMLServer

Stefan Domnanovits

 - 60 -

{
importlib("stdole32.tlb");
importlib("stdole2.tlb");
[

uuid(923D64B8-70DB-4F56-A74D-E7BA5CC94444),
helpstring("XMLServer Class")

]
coclass XMLServer
{

[default] interface IXMLServer;
};

};

6.2.2 Plugin Interface

import "oaidl.idl";
import "ocidl.idl";

[
object,
uuid(5B26D37F-474E-11D4-B5C3-00104BE4D4DD),
pointer_default(unique),
oleautomation, dual

]
interface aceXMLDatabase : IDispatch
{

[helpstring("Execute a Command")]
HRESULT Execute(

[in]BSTR bstrdatabase,
[in]BSTR bstrsqlcommand,
[in]long ncommandtype,
[out, retval] VARIANT* pixmldocument);

};

Stefan Domnanovits

 - 61 -

6.2.3 Administration MMC Snapin

import "oaidl.idl";
import "ocidl.idl";
[

uuid(14E1BB3B-3142-4D6D-AE63-E24D460544C0),
version(1.0),
helpstring("ace XML Server Configuration")

]
library aceXMLServer
{

importlib("stdole32.tlb");
importlib("stdole2.tlb");
[

uuid(95A5F955-3EEC-409C-82F8-3BC26925B2C8),
helpstring("ace XML Server Config Class")

]
coclass Config
{

[default] interface IUnknown;
}
[

uuid(D988AA9F-4647-45AE-B7A0-D4638BAC31B6),
helpstring("Config Class About")

]
coclass ConfigAbout
{

[default] interface IUnknown;
}

};

	Introduction
	Introduction
	How To Read This Document
	Source Code
	UML Diagrams
	XML Representation

	Theory
	Distributed Application Design
	Multilayer Design
	Benefits of Multilayer Designs

	XML
	Object Oriented Programming
	Objects and Classes
	Inheritance
	Polymorphism
	Virtual Function Table

	Templates

	The Component Object Model (COM)
	Basic Idea
	Reusability
	Virtual Classes
	Binary Interface Across Multiple Programming Platforms

	IUnknown
	Interface Definition Language (IDL)
	COM Threading
	Marshaling

	Extended Error Information
	DCOM
	The Service Control Manager
	Security

	The Next Step: COM+
	COM+ Context
	Just in Time Activation and Object Pooling
	Transactions
	What Is A Transaction?
	Transaction Operations
	Distributed Transactions
	2 Phase Commit
	Transactions and COM+

	Implementation
	A Universal Data Access Server
	Important Classes And Library’s Used
	The Standard Template Library (STL)
	string
	vector

	The Active Template Library (ATL)
	Additional Helper Classes
	_variant_t
	_bstr_t
	_com_ptr_t

	Server Design
	Raw Concept
	Plugin Design
	XML Server Command Structure
	XML Command Parameters

	Server Implementation
	XML Server Interface
	Internal Structure
	The Plugins
	Plugin Interface
	Plugin Internals
	The Fabasoft Components Plugin

	Parsing the XML Commands
	Merging the XML Information
	Communication With The Plugins

	Server Configuration
	Configuration Database Design
	The Microsoft Management Console (MMC)
	Snapin Overview
	MMC Internals
	Snapin Internal Implementation

	The Server Clients
	C++ Client
	Visual Basic Client
	Client Results

	Conclusion
	Bibliography
	Appendix
	Project Summary
	Server IDL Files
	XML Server
	Plugin Interface
	Administration MMC Snapin

